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The infinitesimal stability of inviscid, parallel, stratified shear flows to two- 
dimensional disturbances is described by the Taylor-Goldstein equation. 
Instability can only occur when the Richardson number is less than $ somewhere 
in the flow. We consider cases where the Richardson number is everywhere non- 
negative. The eigenvalue problem is expressed in terms of four parameters, J a 
‘typical’ Richardson number, a the (real) wavenumber and c the complex phase 
speed of the disturbance. Two computer programs are developed to integrate the 
stability equation and to solve for eigenvalues: the first finds c given a and J ,  the 
second finds a and J when c = 0 (i.e. it computes the stationary neutral curve for 
the flow). This is sometimes, but not always, the stability boundary in the a, J 
plane. The second program works only for cases where the velocity and density 
profiles are antisymmetric about the velocity inflexion point. By means of these 
two programs, several configurations of velocity and density have been investi- 
gated, both of the free-shear-layer type and the jet type. Calculations of temporal 
growth rates for particular profiles have been made. 

1. Introduction 

stratified, parallel shear flow, when the Boussinesq approximation is made, is 
The stability equation for small disturbances in an inviscid, incompressible, 

N2(x) d2Uldz2 
(U(2)  - C)2 - U(x) - c 

where w(x) is a single Fourier component of the vertical perturbation velocity, x 
is the vertical co-ordinate, N(x) is the local Brunt-Vaisiila frequency, given by 
N2(x)  = -g(dp/dz)/p; U(z )  is the basic velocity profile and C is the complex phase 
speed of the wave mode of wavenumber I c ;  kIm (C) thus represents a growth 
(or decay) rate of the waves. Derivations of (1 .I)  are given by Miles (1961), and 
Drazin & Howard (1966); Thorpe (1969) proposed that (1.1) be called the 
Taylor-Goldstein equation, because Taylor (1931) and Golclstein (1931) fist 
derived it. Together with suitable boundary conditions, it defines an eigenvalue 
problem for C given k ,  or vice versa. We shall consider flows with rigid, horizontal 
boundaries; mathematically this means setting w( + zb) = 0, where zb is the 
distance of the boundaries from the origin, possibly infinite. 

t Present address: Computer Laboratory, Corn Exchange Street, Cambridge CB 2 3QG. 
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The Taylor-Goldstein equation is usually considered in a dimensionless form, 
but there are slight differences in the ways different authors achieve the non- 
dimensionalization. This can lead to misunderstandings in effecting comparisons. 
We shall use the following scheme for non-dimensionalizing (1.1). (i) Let the 
dimensionless vertical co-ordinate be y = x/h, where h is some 'typical ' height. 
(ii) Let the dimensionless wavenumber be a = kh. (iii) Choose axes such that 
U ( 0 )  = 0 (we shall, in fact, be placing the origin at the inflexion point of the 
velocity profile), then write 

U(y) = VU(Y) such that (du/dy),,o = 1, 

log (polp) = 4 y )  = gP(y) such that (dP/dy),,rJ = 1. 

Thus V is a typical velocity, r a typical density measure. (iv) Let the dimension- 
less complex phase velocity be c = C/V.  On this scaling, the Brunt-VBisBlB 
frequency is given by 

dz 
The local Richardson number is 

where J = ggh/ V 2 ,  while the dimensionless Taylor-Goldstein equation is 

where the dash means dldy, and q5 is the dimensionless form of w. We shall adopt 
the notation that G = c, + ic,. As q4 is periodic in the x direction, it is directly 
proportional to the streamfunction, which therefore satisfies the same equation. 

The use of this particular scaling for U and p ensures that the dimensionless 
number J is always equal to the local Richardson number at the origin. This we 
shall take as a Richardson number for the flow. Although in some cases this is 
somewhat unphysical, it has the merit of uniformity for comparisons between 
different cases. 

Eigensolutions of (1.4) with ci > 0 represent unstable wave modes with 
growth rate mi. Those with ci < 0 represent decaying modes. By taking the 
complex conjugate of (1.4), it  is at  once seen that, if q5 = + is a solution with 
eigenvalue c = y (say), then 9 = $* is also a solution, with eigenvalue c = y*. 
Hence, the eigenvalues always appear in pairs, with one growing and one decaying 
mode, except when ci = 0, when there is only one, the neutral mode. However, 
the appearance of the decaying mode is due to the fact that we are using the 
inviscid equations. In practice, it would not be expected to appear, and it will 
be ignored in the rest of this paper. If the velocity and density profiles are 
both anti-symmetric about the origin, another solution can be easily found, 
namely q5 = +, c = - y* = - y,+iyi. Thus, in these cases of anti-symmetry, 
unstable modes always appear in pairs of equal growth rate, travelling in opposite 
directions with equal phase speeds. 
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We can now summarize some important theorems. 
(i) A sufficient condition for stability is R i ( y )  > t everywhere in the flow 

(Miles 1961; Howard 1961). 
(ii) For given a and J, unstable eigenvalues of c (i.e. with ci > 0) must lie in a 

semicircle in the c plane, based on the range of u ( y )  (Howard 1961). 
(iii) The existence of a singular neutral mode (SNM), i.e. a mode with ci = 0 and 

c, within the range of zc(y), impIies the existence of contiguous unstable modes 
(Miles 1963). 

(iv) The ‘neutral curve’ J = Jo(a), which is the locus of SNMs in the a, J plane, 
is not in general single-valued. Each branch corresponds to a distinct SNM 
(Miles 1963). 

(v) The principle of ‘exchange of stabilities’ holds for a stationary SNM 
(c, = ci = 0) if u’(y) and p’(y) are positive definite functions of u that possess 
analytic continuation into the complex u plane (Miles 1963). 

These theorems have formed the basis of previous analytic investigations. 
One of the most important physical aspects of the problem is determining the 
stability boundary of any given configuration in the a, J plane. As theorem (iii) 
states, if a SNM can be found, then a t  least one unstable mode exists. However, 
nothing can be said in general as to whether the associated neutral curve is a 
stability boundary or not. Theorem (v), although appearing to remove this 
difficulty in the caae of stationary SNM’s, is in fact of limited application, because 
of the restrictions on p‘ as a function of u. Only a few configurations satisfy the 
required conditions. 

2. Presentation of results 
A number of different configurations of velocity and density profiles have been 

investigated numerically, using two programs that are fully described in the 
appendix. The velocity profiles can be divided into three classes: shear layers, 
channel profiles, and jet profiles. Here follows a short summary of the notation, 
and a brief description of the programs. All variables are dimensionless. 

2.1. Notation 
y is the vertical co-ordinate; u ( y )  is the basic velocity profile, normalized so that 
u(0) = 0, u’(0) = 1; p ( y )  is the basic density profile, in the form log(p,/p), nor- 
malized so that p‘(0) = 1. x is the horizontal co-ordinate, a the wavenumber; 
J is the Richardson number at the origin, R i ( y )  the Richardson number distribu- 
tion, and &(a) is the neutral curve in the a, J plane. c = c, + ic, is the complex 
phase speed of waves; aci is the growth rate of unstable waves; $(y) is the vertical 
perturbation velocity for the mode of wavenumber a. 

2.2. Programs 
(i) The first program computes the value of G for given profiles, given a and J, if 
an unstable eigenvalue exists. If not, then either the solution is neutral, or there 
is no solution. The program cannot distinguish between these two cases. (ii) The 
second program computes stationary neutral curves in the a, J plane for con- 
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figurations where both the velocity and the density are antisymmetric in y. It 
cannot determine whether these curves are stability boundaries or not; this 
information can, however, be obtained by careful use of program (i). All results 
were computed to an accuracy of four significant figures. 

3. Shear layers 
3.1. The hyperbolic tangent shear layer 

The velocity profile u ( y )  = tanh (y) is important, because it is the prototype of 
smooth shear layers. We consider it in conjunction with the density profile 
p ( y )  = tanh (y). The neutral curve and stability boundary for this configuration 
is J ,  = a(1 -a)  (Holmboe 1960)) which is a parabola symmetric about a = 0.5. 
Within the unstable region, a large number of eigenvalues of c have been com- 
puted, and from this data the maximum growth rates for given J can be deduced 
by interpolation. Figure 1 shows the neutral curve and the curve of maximum 
growth. The unstable waves that one would expect to see in an experimental 
situation are those with the fastest growth rate, for given J .  

I 

0.2 

J 

0.1 

0.25 0.5 0.75 1 .o 
U 

FIGURE 1. Stability boundary and curve of maximum growth rate for 
‘tanh’ profiles, with growth rates marked. 

A convenient way of presenting eigenfunctions, which brings out their struc- 
ture more clearly, is to draw displacements of initially horizontal lines in the 
flow, after some arbitrary time, chosen so that the amplitudes are not so large as 
to completely vitiate infinitesimal theory. The dimensionless displacement at  
any point is given by 

and is easily computed from 4. Figure 2 is a picture of such displacements; the 
lines are initially equally spaced. They may be thought of as dye lines in the fluid, 
or as constant density surfaces, noting that the difference in density between 
pairs of line varies from pair to pair. The area shown covers one and a quarter 
wavelengths in the x direction, and, in the y direction, that part of the flow which 
contains the major part of the disturbance. The velocity profile is shown for 

(3.1) ) )  
exp {ia(x - ct))  

d(x, y )  = Re [ ’(’) 
N Y )  --c 
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reference on the left; the top and bottom horizontal lines are drawn for reference, 
and are not part of the flow. The diagram is drawn correctly to scale, i.e. one unit 
in the x direction is drawn the same length as one unit in the y direction, and it 
clearly demonstrates the structure of the disturbance. 

I 

FIGURE 2. Displacement of dye lines in ‘tanh’ shear flow, 
with a = 0.4449 and J = 0.05. 

0.5 

a! 

FIGURE 3. Stability boundaries for ‘tanh’ profiles, 
with rigid boundaries at distances marked. 

3.11. Efject of boundaries. When the boundaries of the flow are not at infinity, 
the shape of the neutral curve, and also the stability characteristics, are altered. 
Figure 3 shows the changes in the position of the neutral curve (given by program 
(ii)) for boundaries at different distances. Tests with program (i) establish that it 
remains the stability boundary. As the boundaries are moved in from infinity, 
two effects are noticed. The longer wavelengths are de-stabilized, and the left- 
hand branch of the curve rises, while the shorter wavelengths become more 
stable (for given J )  causing the right-hand branch to move to the left. Eventually, 
the latter effect dominates, and, for boundaries closer than a critical distance 
apart, the flow is stable for all a and J. 

Howard (1964) has investigated the effect of boundaries on a homogeneous 
hyperbolic tangent shear layer, and has found the critical distances at  which the 
flow becomes stable for all wavelengths to be given by ycrit = 1.1997. Using 
program (ii), it was not found possible to determine ycrit in the stratified case 
better than 1.195 < ycrit < 1.205, owing to numerical instabilities that arise when 
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both a! and J are small. However, the agreement with Howard's figure is good. 
The value of ycrit should be the same as in the homogeneous case, as it is a limit 
with J tending to zero. 

The initial destabilization of the longer wavelengths for non-zero Richardson 
number is at  first sight an unexpected result. The mechanism can be understood 
by considering a two-fluid system between walls, with constant density and 

1 
FIGVRE 4 

velocity in each fluid (see figure 4). A well-known result for interfacial waves is 
that the wavenumber k is given (in dimensional form) by 

g ( p ,  -pl) = kp,(u, - c ) ~  Goth (kh,) + TCp2(u2 - c) ,  Goth (kh2). (3.2) 

Consider long waves, keeping h, and h, finite. Then 

for kh, and kh, + 1. We make the Boussinesq approximation, and write 

PI - P2 = P. 

Also, for simplicity, write u, = -u2 = V ,  h, = h, = h, and (p2-pl ) /p = 2 c ~ .  Then 

2ggh = 2('V2+c2). (3.4) 

Thus, the flow is unstable if ash/ V 2  < 1, and a decrease in h can cause the flow to 
be destabilized. 

Now, in the case of the hyperbolic tangent shear layer, when Y ,  the distance 
of the boundaries from the origin, is greater than about 2.7 (the point a t  which 
tanh Y E 0.99), the configuration will behave for long waves in the same way as 
the two-layer system we have just discussed, since the ranges of u and p remain 
approximately constant, and independent of Y .  Thus, we expect long waves to be 
destabilized by decreasing Y .  However, when Y is less than about 2.7, the ranges 
of u and p decrease with Y ,  and the system ceases to resemble a two-fluid system 
for long waves, tending to uniform shear and linear density. In  this case, there- 
fore, we would expect unstable long waves to be eventually stabilized by de- 
creasing Y .  Referring to figure 3 we see that the point where the left-hand branch 
of the stability boundary starts to descend again is approximately at  Y = 2.5. 

3.12. Effects of change of density scale. Since in most laboratory experiments and 
naturally occurring situations the vertical scales of the velocity and density shear 



Stability of stratijed shear flows 45 

layers are in general different, the effect of changing the density scale with 
respect to the velocity scale was investigated, using the following configurations: 

(3-5) 

where R is the ratio of the scales. As R tends to infinity, the density structure 
tends to a step, of zero width. The Richardson number distribution for this 
configuration is 

Ri(y) f cosha (Ry) . 
Ri/J is shown for Werent va1ues:of R in figure 5. The stationary neutral curves 
for this configuration (for different values of R) are shown in figure 6, while the 
value of a at the maximum of the neutral curve (which is always at J = 4) is 

~ ( y )  = tanh (y), P(y) = (1/R) tanh (Ry) ( - 00 < y < 001, 

(3-6) 
J cosh4 (y) 

4 

3 

1 

1 

J ( Y )  

2 

FIGURE 5. Richardson number profiles Ri (y ) / J  for u = tanh ( y ) ,  
B = tanh (Ry ) /R ,  as R varies. 

shown plotted against R in figure 7. This is the wavenumber that would be 
expected to become unstable first, with decreasing J ,  in cases where the stationary 
neutral curves are stability boundaries. 

In  investigating the stability characteristics, we shall consider separately the 
three different kinds of Richardson number profile. 

(i) For 0 < R < 42 ,  Ri(y) has a minimum at y = 0,  and is monotonically 
increasing to infinity as y-f f co. As R = 1 falls in this rkgime, we expect that 
other values will give similar characteristics, viz. a stability boundary which is a 
stationary neutral curve. The case R = 0.5 was briefly considered; outside the 
neutral curve program (i) would not converge, while the growth rates obtained 
inside it tend to zero on the curve, as expected. 

(ii) For 4 2  < R < 2, Ri(y) has a local maximzcrn at y = 0, with minimum at 
y = fyrn in  (given by 2tanhymin = RtanhRy,i,), but still tends to infinity as 
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y+ & co. The cases R = 1.75 and R = 2-0 were investigated, using program (i). 
The only unstable solutions found were inside the stationary neutral curves, and 
the growth rates decrease to zero as they are approached. We conclude that the 
stationary neutral curve is the stability boundary in this regime also. 

0.2 - 

J 

0.1 - 

I I I 

0.5 

a 

FIGURE 6. Stationary neutral curves for u = tanh ( y ) ,  
/3 = tanh ( R y ) / R ,  R values as marked. 

I 
I I I I 
5 10 15 20 

R 

FIGTJRE 7 .  Values of a giving J = 0.25 on the stationary neutral curves 
as a function of R, for u = tanh ( y ) ,  /3 = tanh ( R y ) / R .  

(iii) For R > 2, Ri(y) tends to zero as y+ & 00, and J is its maximum value. The 
case R = 5.0 has been thoroughly investigated, and several interesting features 
have appeared. The stationary neutral curve is not the stability boundary, and 
an anomalous modal structure exists. The stability characteristics are sum- 
marized in figures 8 (a, b) ,  in which the various regions are as follows. (a) In  these 
regions, program (i) finds no unstable solutions. The only possible solutions are 
therefore neutral ones. (b )  In  this region, an unstable moving mode is found 
(c, + 0, ci > 0). Because of the anti-symmetry of the velocity and density profiles, 
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/ Stability boundary 
/ J = R a  

/' 

(a) Stable 

(u) Stable 

This region shown 

I I 
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FIGURE 8. (a)  Approximate stability characteristics for u = tanh (y), p = tanh (Ry)/R, 
with R = 5. (a) A portion of (a)  with the J scale much expanded. 
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there are in fact two modes, of the same growth rate, moving with equal velocity 
in opposite directions. (d)  In  this region, there are two stationary, unstable modes 
(c, = 0, ci > 0). The dividing line (c), between regions (b) and (d), marks the 
locus of bifurcation points in the c plane, points where the phase velocities of the 
two modes of region (b )  become zero, and the growth rates of all four modes of 

-0.3 -0.2 -0.1 0.0 0.1 0.3 

c, 

FIGURE 9. Locus of eigenvalues as a function of a for u = tanh(y), p = tanh (Ry)/R, 
with R = 5,  and J = 0.15. Values of a are marked. 

regions@) and (d)areequal. (f) Inthisregion,(andin (9)) thereis onestationary, un- 
stablemode. The dividing line between regions (d )  and (f) is the stationary neutral 
curve (e ) .  This relates to the other stationary, unstable mode, which is unstable 
outside it, in region ( d ) .  The programs cannot investigate its behaviour any further 
inside the neutral curve, but we know that it is neither unstable, nor neutral and 
stationary, so it is suspected that it is neutral and moving. The behaviour of the 
eigenvalues of c as a: varies along a line of fixed J ,  passing through all the above 
regions, is shown in figure 9. The labels (a)-(g) correspond to the areas and lines of 
figure 8(b ) .  

3.13. Discussion of results. The results quoted above for the case R = 5 demon- 
strate that, even for fairly simple configurations, we cannot always expect simple 
stability characteristics, It must be emphasized that the stability boundaries and 
the curve of maximum growth in figures 8 (a), (b )  are not accurate, but are merely 
extrapolatioils and deductions from the known eigenvalues. Because Ri(m) = 0, 
there is always a region where Ri(y) < a, for any value of J .  Drazin & Howard 
(1966) discuss the results of Holmboe (1962) for the configuration 

which is a piecewise continuous approximation to our present configuration with 
R 1. The stability characteristics are very similar to those found for our con- 
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figuration (for R = 5). There is an unstable region where c, = 0 near J = 0, and 
another unstable region, where c, =+= 0, which extends to infinity. Near the origin 
the stability boundary is asymptotic to Jo = a, while both stability boundaries 
tend to J, = a - 1 at infinity (see Drazin & Howard 1966, figure 7). The numerical 
values on the stability curves are different from those of figures 8(a, b) .  In  
particular, the instability for J = 0 is confined to a < 0-64, and the largest value 
of J for stationary unstable waves is less than 0.1. However, there is enough 
qualitative agreement to confirm the deductions we have made from our numerical 
results. We have shown that the flow is always unstable for some wavenumbers; 
but the growth rates are very small for large J ,  and the wavelengths are small 
too, so that in practice some sort of viscous damping is to be expected. 

i 0.25 

m, .\ : . .\.=.. <: 0 7 .  /. . 4 .  

/! . \ r  

. /  .=. .+.... . . . . . ..= .\ J 0.125 

\ 
I I 

0.5 

U 

1 .0 

FIGURE 10. Stability characteristics for u = tanh (Qy)/Q, /3 = tanh y, with Q = 1 for 
y 2 0, Q = 1.2 for y < 0. ., stable points; 0,  unstable points. 

3.14. Effects of asymmetry. A brief investigation into the effects of making the 
velocity profile slightly asymmetric was made. The profiles considered were 

P(y) = tanh y. 

Because of the asymmetry, only program (i) could be used here. It showed that 
the unstable modes for this configuration are moving ones, and that the stability 
boundary is not a stationary neutral curve, since the eigenvalues tend to non-zero 
real numbers on it. Figure 10 shows the stability boundary, drawn by plotting 
the stable and unstable points and then fitting the curve in between. Figure 11 
shows the eigenvalues along a line of constant J ,  as a is varied, demonstrating the 
Eon-zero limits of c, when ci tends to zero. Here again, then, is evidence that 
slight changes in the configuration can radically alter the stability characteristics. 
In  particular, it should be noted that the largest value of J for which there is 
instability is less than B. 

These results are important, because few density or velocity profiles in the 
atmosphere or ocean are precisely symmetric. The effect of asymmetry is much 

FLM 5 I  4 
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more noticeable in the phase speed c, than in the growth rate aci for J less than 
0.2. Thus, theoretical results obtained using symmetric profiles should be 
accurate when used to predict experimental growth rates in this region, but not 
when used for phase speeds. 

I I 

0.05 0.1 

c, 
FIGURE 11. Locus of eigenvalues for u = tanh (Qy)/&, p = tanh (y), with 

Q = 1 for y > 0, Q = 1.2 for y < 0, and J = 0-1. 
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FIGURE 12. Neutral curve for error function profiles. 

3.2. The error ficnction shear layer 

A better model than the hyperbolic tangent for experimental shear profiles is the 
error function. Previous authors have relied on theoretical results using hyper- 
bolic tangent profiles to compare with experiment, because of the close approxi- 
mation of tanh y to erf($,/ny), and the greater analytic simplicity of dealing 
with the hyperbolic tangent. In  order to check the accuracy of the physical 
assumption that hyperbolic tangent and error function configurations were 
virtually identical in their stability characteristics, the following configuration 
was investigated numerically: 

~ ( y )  = erf(+,/Ty), P(y) = erf($,/ny) ( -00  < y GOO). (3.9) 
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It was found that the neutral curve and stability boundary for this configura- 
tion was indeed very close to that of the equivalent configuration using the 
hyperbolic tangent. It is shown in figure 12. A number of eigenvalues were also 
computed, and these, too, were not very different from the equivalent ‘tanh’ 
values. Thus, for most experimental purposes, the assumption of hyperbolic 
tangent profiles is sufficiently accurate. 

0.1 5 

6- 0.1 
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FIQTJRE 13. Comparison of growth rates for error function profiles with 
experiment; (a) J = 0.07, ( b )  J = 0.15. 

3.21. Comparison with experiment. Scotti (1968) carried out experiments in a 
wind tunnel which investigated the stability of an error function shear layer 
made by allowing the interface between two streams of air, at different tempera.- 
tures and velocities, to diffuse. Small disturbances were introduced into the 
interface and the resulting temporal growth rates of unstable waves were 
measured. The experimental profiles were such that the density scale of variation 
was slightly larger than that of the velocity; so, for comparison, we consider the 
following configuration: 

u ( y )  = erf(&hy), P(y) = (1/0.8)erf(0.8$,/~y) ( -COG y Gm). (3.10) 

The comparison with experiment is shown in figures 13(a, b).t  In figure 13 (a), 
the circles and triangles represent two different experimental runs, while the 

t Sootti used the density scale for his non-dimensionalization of the wavenumber 01, 

whereas we have used the velocity scale, so his results as plotted here have all been 
multiplied by 0-8 to compare them with the numerical predictions. 

4-2 
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solid line is drawn from computed values. The open circle is an experimental 
point which was actually measured as a decay rate, but has been plotted with its 
sign changed. There was only one run at  the higher Richardson number (figure 
13 (b) ) .  Almost all the experimental points fall inside the predicted curve, and 
this indicates that some form of damping was present in the experiments. The 
growth rates measured in the experiments were found to be dependent on the 
distance downstream from the disturbance at which they were measured, and 
“growth rates obtained at  the mid and downstream stations were generally much 
smaller than those obtained upstream” (Scotti 1968). The upstream values are 
the ones used in figures 13 (a, b ) ,  as Scotti gives an experimental explanation for 
the reduction of the growth rates downstream. This comparison between the 
experimental and the computed growth rates shows that inviscid, linear stability 
theory has some value in predicting the behaviour of the flow under the cir- 
cumstances considered (cf. Thorpe 1969). 

4.1. 4. Channel profiles First configuration 

Three stationary neutral curves for the configuration 

4 y )  = sin (y), P(y) = y ( --7T Q y Q 4 (4.1) 

are given by Drazin & Howard (1966). Thorpe (1969) has pointed out that the 
third is in error. The correct forms are 

J ,  = (l-a2)4-1+a2, (4.2) 
J, = 3(1-a2)3-3+a2 (0 Q 01. < l), (4.3) 

a = 1 4 3  2 .  (4.4) 

The second is satisfied only by negative J,, and is of no interest in the present 
investigation. There is no analytic evidence as to whether either of (4.2) or (4.4) 
are stability boundaries, although the homogeneous flow ( J  = 0) is known to be 
stable for 0 Q CI Q 4-43. 

Program (i) was used to investigate this configuration, and the results show 
that the neutral curve (4.2) is in fact a stability boundary for 0 Q a Q 4-43) the 
remainder of the boundary being made up of the line a = + J3 (0 Q J, 6 t),  which 
is part of the neutral curve (4.4). This is shown in figure 14, which also shows the 
curve of maximum growth. Figure 15 shows, for a point in the a, J plane near 
the curve of maximum growth, displacements of constant density lines in the 
central region of the flow. 

4.2. Xecond configuration 

Another configuration with u = sin y that was briefly considered was 

u ( y )  = sin(y), P(y) = +y+*sin(2y) (-7r Q y Q n). (4.5) 

The Brunt-Vaisala frequency is proportional to cos2 y, while the Richardson 
number distribution is constant, equal to J .  Two stationary neutral curves are 
given by Thorpe (1969) : 

J, = CI2( 1 - a2) ,  J, = 2 - a2. (4.6)) (4.7) 
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0.2 

J 

0.1 

FIGURE 14. Stability boundary and curve of maximum growth for 
u = sin (y), /3 = y( -n < y < n), with growth rates marked. 

1 * c I 1 1.8 

- 1.8 

FIGURE 15. Displacament of dye lines in the flow u = sin (y), /? = y, 
with a = 0.6, J = 0.01. 
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FIGURE 16. Stability boundary for the profiles u = sin (y), /I = +y+) sin (29 ) .  
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In  a similar way to the previous case, (4.6) is the stability boundary for 

0 < a < 42,  

while (4.7) is the stability boundary for 1/42 < a < + J3 (figure 16). 
The above two configurations, besides modelling possible experimental situa- 

tions, serve to illustrate complexities that can arise when there is more than one 
neutral curve. 

5. Jet profiles 
5.1. The Bickley jet 

The profile u(y) = sech2(y) is one of the standard forms used in modelling jet 
profiles; Drazin & Howard (1966) give neutral curves for two configurations. We 
shall consider the one with P ( y )  constant. This is, on their scaling, 

u*(y) = sech2(y), P(y) = y (-a< y <a). (5.1) 

u*(y) is so called because it is not in the standard form used in this discussion. 
Note that it is not an odd function of y, and hence the unstable eigenvalues will 
not this time be found in pairs, & c, + ici. Thus, the sign of c, is important. The 
neutral curves given by Drazin & Howard are not stationary. They are given by 

J* = a2(4 - a2) (9 -a2)/225,}  

C* = (6+a2)/15, 

(5.3) 
and J* = a2(1-a2)(9-a2)(3+~2)2/9(3+5a2)2, 

c* = (3+a2)2/3(3+5a2). 

There is no clear argument as to whether these are stability boundaries or not. 
The Richardson number distribution is 

Ri*(y) = J*/4 sech4 y tanh2 y. (5.4) 

The inflexion points are at  y = 2 yo, where tanhy, = 1/ J3. At these points 
the Richardson number achieves its minimum value, (+i)J*. Thus, the use of J* 
as a Richardson number for the flow is somewhat misleading ! 

In  order to study this configuration numerically, we move the origin to the 
lower inflexion point, and normalize the profiles as in $1. Then (5.1) becomes 

u(y) = (sech2(y -yo) - sech2yo)/4 tanh3 yo, 
(5.5) 1 P(y)  = Y  (-a < Y GOO), 

where tknh yo = 1/ J3. The Richardson number distribution is 

Ri(y)  = 4 J  tanh6 yo/sech4 (y - yo) tanh2 (y - yo); (5.6) 

it achieves its minimum value of J a t  y = 0 and y = 2y0. The neutral curves 
(5.2) and (5 .3)  become 

Jo = 3a2(4-a2)(9-a )/ 
400’) (5.7) 

c = [(6 +a2)/15 - $1 (QJ3), 
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(5 .8 )  
and J, = 3a2( 1 -a2) (9 -a2) ( 3  + ~ ~ ~ ) ~ / 1 6 ( 3  + 

c = [ (3+a2)2/3(3+5a2)-9]  ( 2 4 3 ) .  

The configuration cannot be studied using program (ii), as it does not satisfy the 
symmetry conditions. However, program (i) was used to find eigenvalues, and to 
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0.5 1 .o 1.5 2.0 

01 

FIGURE 17. Stability boundary and curves of maximum growth 
for each mode for the Bickley jet with N a  constant. 
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FIGURE 18. Eigenvalues for the Bickley jet with N2 constant. 
J = 0.1, while the u values are as marked. 
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test for stability. The growth rates found for the case J = 0 were found to be in 
complete agreement with Drazin & Howard’s (1966) growth rates for a homo- 
geneous Bickley jet. Further computations showed that the stability boundary for 
the whole flow is made up of the two upper sections of the curves (5.7) and (5.8) 
in the a, J plane, the unstable region being all the area included under either 
curve. This is shown in figure 17, which also shows the curves of maximum growth 
for each mode. This is another example where the stability boundary has its 
maximum below J = $. Equations (5.7) and (5.8) are each stability boundaries 
for their respective modes; this is revealed by studying the locus of eigenvalues 

\ 

I 
I - 

/ 

2.0 

0.66 

- 1.0 

/ 1- - 1.0 

( IJ)  
FIGURE 19. Displacement of dye lines in the Bickley jet with N 2  constant : (a )  a: = 0.52, 

J = 0.01 (varicose mode); ( b )  a = 0.9908, J = 0.05 (sinuous mode). 

in the c plane along a line of constant J (see figure Is).? There is no evidence of a 
bifurcation point of the type found for the configuration (3.5). In this case, the 
two modes appear to be totally independent, one having c, > 0, the other c, < 0 
(i.e. they travel in opposite directions). Figure 19 shows typical density line 
displacements for each mode. Relative to the inflexion point, the varicose 
disturbance moves forwards, and the sinuous one backwards (c, < 0), so that 
relative to an origin chosen to make u ( y )  = sech2y, the sinuous mode is the 
slower moving. 

5.2. The double j e t  

The instantaneous velocity profile at the crest of a gravity wave on an interface 
between two fluids is u(y)  = tanhysechry, where r is related to the wave- 

t In  this figure, the values of c, on the neutral curves (i.e. when ci = 0) were computed 
from (5.7) and (5.8). 
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number. It is thus of interest to investigate the stability of this profile. We 
consider 

The Richardson number distribution is 
u(y)  = tanhysechry, P(y) = tanhy (-a <a< y). (5.9) 

J sech2(l-’) y 
(1 - (1  + T )  tanh2y)2‘ 

Ri (y )  = (5.10) 

For r = 0, we recover the configuration of Holmboe (1962), while r = 1 gives a 
case solved by Dra in  & Howard (1966). For 0 < T < 1, the Richardson number 
descends to zero a t  infinity, and can have a smaller value at the upper and lower 
idlexion points than it does at the central one. However, Ri has infinities between 
the origin and the other inflexion points, and these we expect to isolate the 
effects of the inflexion points from one another. Thus, we do not expect to find 
unstable moving modes of the type found for the hyperbolic tangent shear layer 
with small density scale. 

Investigations using program (ii) revealed, as might be expected, that the 
stationary neutral curve changes smoothly from the r = 1 position to the T = 0 
position as r varies from 1 to 0. Results from program (i) established that it 
remained the stability boundary throughout. 

6. Conclusions 
In  $Q 3- 5 we have considered a number of different configurations of density 

and velocity. We shall now summarize the results without reference to any 
particular profiles, and draw some general conclusions. 

First, growth rates and curves of maximum growth have been computed for 
various configurations. Comparison with the experimental results of Scotti 
(1968) gives some agreement for shear-layer temporal growth rates, showing that 
the inviscid, linear stability analysis is useful for predicting the initial growth 
rates a t  high Reynolds number (within about 30 %, in most cases). No experi- 
mental results are available for any jet profiles. 

Second, we have demonstrated the following. 
(i) Long waves in a stratified shear layer where Ri < $ at the inflexion point are 

initially destabilized when the boundaries of the flow are brought in from 
infinity. 

(ii) The major effect of asymmetry in shear-layer profiles is to alter the phase 
speed of the waves, without having much effect on the growth rates. 

(iii) When there are two or more singular neutral modes, the stability boundary 
for the flow can be made up of parts of the corresponding neutral curves. The 
regions of stability and instability can often be guessed from a knowledge of the 
stability characteristics of the homogeneous flow with the same velocity profile. 

(iv) The maximum value of the Richardson number for which some wavelength 
is unstable, in cases which exhibit instability, can be less than t. The actual values 
found, however, have not been less than 0.2 for all the unbounded velocity 
profiles (shear layers and jets) that have been considered. It would appear, 
therefore, that Miles’s necessary condition for instability is quite a good ad hoc 
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sufficient criterion to use in the field. Nevertheless, most of the configurations 
have been smooth, symmetric profiles, which cannot be expected to model 
experimental situations precisely, so that due caution must be exercised. 

(v) When the scale of the density variation is much less than that of velocity 
variation in a shear layer, the flow is unstable for some a, however large J may be. 
The unstable modes are moving ones for large J ,  but, in the region 0 < J < 0.25, 
they are stationary for some a, the dividing line being a locus of bifurcation 
points in the c plane. The stationary neutral curve marks an island of stability 
for one of the modes. It is of interest to know under what circumstances this type 
of instability (which we shall call type 9) can be expected. We might conjecture 
that a necessary condition is that Ri should tend to zero at infinity. There must 
also not be any infinities in Ri(y) (e.g. as in profile (5.9)), as these will isolate the 
region near the origin from the effects of the small Ri at infinity. A stronger 
condition is that Ri should not have a local maximum, except at y = 0. A test of 
this conjecture is provided by the configuration 

u(y) = tanhy, P’(y) = (1+tanh2y)sech6y ( -00  <b <a), (6.1) 

which has a Richardson number distribution 

Ri(y) = (1 + tanh2 y) sech y. (6.2) 

This function tends to zero at infinity, but has a minimum at y = 0. The stationary 
neutral curve was found using program (ii), and is only slightly different from the 
the case with /3 = tanh y. Using program (i) to scan the a, J plane, no unstable 
modes were found outside the neutral curve. 

Thus, we conjecture that instability of type 9 is to be expected for shear-layer 
configurations where the Richardson number is bounded, tends to zero a t  infinity, 
and has no local maximum except at  the origin. 

The work described in this paper forms the major part of the author’s Ph.D. 
thesis (Hazel 1969). I am indebted to Dr F.P. Bretherton for a large amount 
of help and guidance while working on this problem, to Dr S.A. Thorpe for 
many fruitful discussions and suggestions, and to Dr H. Huppert for his help 
with the drafting of the original manuscript. 

Appendix. Numerical solution of the eigenvalue problem 
The eigenvalue problem is presented in terms of four parameters, a, J and the 

complex number c. It is convenient to regard two of the parameters as given, and 
to present results in the plane of the other two. There are then two obvious 
possibilities; find c given a and J ,  or find a and J given c. The former is a more 
local physical approach (viz. finding the growth rate and phase speed for com- 
pletely specified profiles, considering a given wavenumber). The second possibility 
is useful when looking for stationary SNM’s. In  other cases, there is no guidance 
as to what values of c it is sensible to choose. 
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First program 

The approach used in program (i) is to fix a and J ,  and to look for the eigenvalue c. 
As long as c( is not zero, the equation is not singular, and, since we are looking for 
unstable solutions, this is always the case. A standard ‘shooting’ approach is 
used (i.e. we integrate the Taylor-Goldstein equation inwards, from the boun- 
daries to the origin, then consider the matching problem across the origin). This 
technique has been used analytically by Drazin & Howard (1962), in solving the 
stability problem for long waves in a homogeneous shear flow, and numerically 
by Kaplan (1964) for a problem in laminar boundary-layer theory. For flows 
with boundaries at infinity, of course, it is impossible to start integrating actually 
at the boundaries. Since the boundary condition is $ = 0, however, we expect $ 
to be exponentially decaying a t  & 00. Writing (1.4) as 

$’ -q2(Y)$ = 0,  (A 1) 

we must require that q2(y) tends to a constant (possibly complex, but not on the 
negative real axis), as y+ k 03, if we are to consider W t e  flows. Then we can 
start the integration at y = k Y say, where 

lr2(Y)--r2(O3)l < 1 

in some appropriate sense, and take as the starting values of $ and $‘, 
exp{ T ~ ( y )  y} and T ~ ( y )  exp{ T ~ ( y )  y} at k Y ,  respectively.? 

The condition r2(y) -+ constant at  infinity is the only one placed on the velocity 
and density profiles, apart from those implicit in the non-dimensionalization. 
For flows in which the boundaries are not at  infinity, the restriction on 9 2  is 
unnecessary. 

Thus, we integrate in from k Y to the origin (keeping a and J fixed), to obtain 
$+, 9; and $-, $:(say) as the (complex) values of the numerical solutions and 
their derivatives at the origin. For a matched solution, we require 9 and $’ to be 
continuous across the origin. Hence, we require 

A$+ = B$- and A$; = B$L, 

where A and B are arbitrary constants. A solution is possible if ($+/$:) = ($-/$:). 
We therefore define a matching function, 

M(a,  J ,  4 = $-$i - $+$L, (A 2) 

which is, of course, complex. The zeros of M as a function of c give the eigenvalues 
of c for fixed a and J .  The special cases $+ = 4: = 0 or $- = $L = 0 were never 
found to occur in practice. 

Program (i) evaluates the complex function M(a,  J ,  c) at different points in 
the c plane (keeping a, J fixed and c( > 0) ,  and search for a point where I MI is 
less than IMI at all the surrounding points. When it has found such a point, it 
proceeds with a complex linear interpolation process in an attempt to find a zero 
of M .  If the values of a and J are such that an unstable solution is possible, this 
process is found to converge very rapidly, giving an accuracy of 0.1 % for c in 

The square root of rqa is chosen so that -in < arg rq < *n. 
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three or four steps in most cases. Having found an eigenvalue, the program can 
then be made to output the full eigensolution for q5.t 

If the values of a and J chosen are not such that an unstable solution is possible, 
then the program can find a solution only if the eigenvalue is such that c,. lies 
outside the range of u(y). It cannot find neutral solutions with c, inside this range, 
because the Taylor-Goldstein equation is then singular. 

Second program 

This program is much simplified in cases where [72(y)],=o is an even function of y 
(i.e. when both ~ ( y )  and P(y) are odd functions), and, since a large number of 
interesting configurations satisfy these conditions, the program has been written 
for this case only. Keeping c = 0, the program looks for the corresponding 
eigenvalues of a and J. For profiles which satisfy the conditions of theorem 
(v), the stability boundary in the a, J plane is made up of neutral curlyes 
which are the loci of one or more stationary SNM’s. Other neutral curves, in 
general, do not have c, constant along their length. Whether or not a stationary 
neutral curve is a stability boundary can be established by investigating the 
eigenvalues near it, using program (i). 

By definition, therefore, we put c = 0, and the Taylor-Goldstein equation 
becomes 

This is a real equation, which is singular at y = 0, since we have chosen o w  axes 
such that u(0)  = 0. Thus, we can integrate in numerically only to within a non- 
zero distance of the origin, and the matching across the singular point must be 
achieved analytically. We do this by considering an approximate solution for 
IyI < 1. If we expand u(y) and /3’(y) in Taylor series, the equation becomes, to 
highest order in each term, 

J 2u2 

Y2 Y 
We can always choose I yI small enough so that the y-2 term dominates. An 
approximate solution is then 

where v = (a - J )+ ,  and A and B are arbitrary constants. In  most of the cases we 
shall be considering, J will be less than or equal to a, but the analysis is not 
dependent on v being real. Suppose now that we integrate (A3) numerically 
inwards from the boundaries to points y = k ym, such that ym < 1, and (A 5) is a 
good approximation to the solution there. The starting values for the integration 
are determined as for program (i), but now, because c = 0, the equation is real. 
This means that [q2( ~ C O ) ] ~ = ~  must be a positive number. Suppose that the 
numerical values obtained from integrating inwards from the boundaries are 

q5+A at Y = Ym, 

q5-,q5!- at y =  -y in * 

t The integration is carried out by means of a standard Runge-Kutta routine, using a 
variable steplength which is computed as H(y) = O.ll?j(y)l-l. 
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In the case where [~j~(y)],=~ is an even function, #+ = #- = # (say), and 
q5: = -4’ = 4’ (say). Analysis similar to that for program (i) leads to a 
matching function 

The zeros of &(a, J )  give the stationary neutral curve. 

&(a, J )  = J#2 + &#I2 - ym $4’. (A 6) 
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